Solution to 1996 Problem 80


Recall the following trigonometric identity
\begin{align*}\cos x + \cos y = 2 \cos \left( \frac{x - y}{2}\right) \sin \left( (x+ y)/2 \right)\end{align*}
Let x = 2 \pi f_A t and let y = 2 \pi n f_D t. Here, n corresponds to the harmonic, f_A = 440.000 \mbox{ Hz} and f_D = 73.416 \mbox{ Hz}.
Then, the superposition of the two notes is
\begin{align*}\cos 2 \pi f_A t + \cos 2 \pi n f_D t = 2 \cos \left( 2 \pi \frac{f_A + f_D}{2}\right) \cos \left( 2 \pi t (f_A...
So, the beat frequency is (f_A- f_D)/2. The following table shows the value of (f_A- f_D)/2 for various values of n.
\begin{center}\begin{tabular}{|c|c|}
\hline
n & (f_A- f_D)/2 (in Hz)\\
\hline
1 & 183.292 \\
\hline
2 & 146.584 \\
\hline
3 & 109.876 \\
\hline
4 & 73.168 \\
\hline
5 & 36.46 \\
\hline
6 & 0.248 \\
\hline
7 & 36.956 \\
\hline
\end{tabular}\end{center}
So, clearly the smallest number of beats occurs when n = 6. Recall that a beat occurs whenever the second cosine factor equals +1 or -1, therefore, the number of beats per second is 2\cdot0.248 = 0.496. Therefore, answer (B) is correct.


return to the 1996 problem list

return to homepage


Please send questions or comments to X@gmail.com where X = physgre.